किसी प्रदेश में विधुत क्षेत्र $\overrightarrow{ E }=\frac{2}{5} E _{0} \hat{ i }+\frac{3}{5} E _{0} \hat{ j }$ है यहाँ $E _{0}=4.0 \times 10^{3} \frac{ N }{ C } \mid Y - Z$ तल के समान्तर $0.4\, m ^{2}$ क्षेत्रफल के आयताकार पष्ठ से गुजरने वाला इस क्षेत्र का फ्लक्स $.........\,Nm ^{2} C ^{-1}$ होगा।

  • [JEE MAIN 2021]
  • A

    $624$

  • B

    $661$

  • C

    $620$

  • D

    $640$

Similar Questions

एकसमान विद्युत क्षेत्र $E =3 \times 10^{3} \hat{ 1 } N / C$ पर विचार कीजिए

$(a)$ इस क्षेत्र का $10\, cm$ भुजा के वर्ग के उस पाश्व से जिसका तल $y z$ तल के समांतर है, गुजरने वाला फ्लक्स क्या है?

$(b)$ इसी वर्ग से गुजरने वाला फ्लक्स कितना है यद् इसके तल का अभिलंब $x$ -अक्ष से $60^{\circ}$ का कोण बनाता है?

$\alpha $ भुजा वाले एक घन के केन्द्र पर एक विद्युत आवेश $q$ रखा गया है। इसके फलकों में से एक फलक पर वैद्युत अभिवाह (electric flux) का मान होगा

  • [AIIMS 2001]

$z$-अक्ष के समांतर एक अनंत लम्बाई की पतली अचालक (non-conducting) तार पर एकसमान रेखीय आवेश घनत्व (uniform line charge density) $\lambda$ है। यह तार $R$ त्रिज्या वाले एक पतले अचालक गोलीय कोश (spherical shell) को इस प्रकार भेदता है कि आर्क (arc) $P Q$, गोलीय कोश के केंद्र $O$ पर $120^{\circ}$ का कोण बनाती है, जैसा कि चित्र में दर्शाया गया है। मुक्त आकाश का पराविधुतक (permittivity of free space) $\epsilon_0$ है। निम्नलिखित कथनों में से कौन सा (से) सही है (हैं)?

$(A)$ कोश से गुजरने वाला विधुत फ्लक्स (electric flux) $\sqrt{3} R \lambda / \epsilon_0$ है

$(B)$ विधुत क्षेत्र (electric field) का $z$-घटक ( $z$-component) कोश के पृष्ठ (surface) के सभी बिन्दुओं पर शून्य है

$(C)$ कोश से गुजरने वाला विधुत फ्लक्स (electric flux) $\sqrt{2} R \lambda / \epsilon_0$ है

$(D)$ विधुत क्षेत्र (electric field) कोश के पृप्ठ के सभी बिन्दुओं पर लम्बवत (normal) है

  • [IIT 2018]

प्रदर्शित चित्र में $\mathrm{C}_1$ तथा $\mathrm{C}_2$ दो खोखले संकेन्द्रीय घन है जिनके अन्दर क्रमशः $2 Q$ व $3 Q$ आवेश स्थित है। $\mathrm{C}_1$ व $\mathrm{C}_2$ से गुजरने वाले वैद्युत फ्लक्स का अनुपात है :

  • [JEE MAIN 2024]

चित्र में दिखाये गये बक्से से होकर विधुत क्षेत्र $\overrightarrow{ E }=4 xi -\left( y ^{2}+1\right) \hat{ j } N / C$ निकलता है। यदि बक्से के $ABCD$ तथा $BCGF$ समतलों में से होकर जाने वाले फ्लक्स का मान क्रमश: $\phi_{ I }$ तथा $\phi_{ II }$ है तब इनमें अन्तर $\left(\phi_{ I }-\phi_{ II }\right)$ $\left( Nm ^{2} / C \right)$ में होगा $......$

  • [JEE MAIN 2020]